Цели и задачи урока: актуализировать представления обучающихся о процентах, сформировать умение решать задачи на сушку различными методами.

Добрый день, дорогие ребята!

На предыдущих уроках мы с вами рассмотрели три основных типа задач на проценты, научились их решать различными способами: исходя из определения процента, используя правила и с помощью пропорции. Сегодня наш урок мы посвятим решению задач определённого типа, а именно, так называемых задач на сушку. Ну а чтобы вы немного прониклись важностью момента, замечу, что задачи такого типа постоянно встречаются на выпускных экзаменах в 9 и 11 классе.

Рассмотрим конкретную задачу:

 Задача 1.

Свежие грибы содержат 90 % воды, а сушёные – 14 % воды. Сколько сушёных грибов получится из 43 кг свежих?

Будем считать, что грибы условно состоят из воды и сухого вещества. Во время процесса сушки вода испаряется, а количество сухого вещества остаётся неизменным. (Возможна ли здесь анимационная картинка как сохнет гриб?)

Сделаем графическую иллюстрацию к задаче:

Поскольку в свежих грибах содержится 90 % воды, значит, на сухое вещество приходится 100 % – 90 % = 10 % массы свежих грибов. Найдём 10 % от 43 кг.

 

При сушке масса сухого вещества не изменится, но оно будет составлять уже 100 % – 14 % = 86 % от массы сушёных грибов. Т. е. 4,3 кг – это 86 %. Найдём массу сушёных грибов, для этого 4,3 разделим на 0,86. Напомню, что мы применяем здесь правило нахождения числа по его проценту. . Т. о. из 43 кг свежих грибов получится 5 кг сушёных.

Запишем решение по порядку действий:

 1) 100 - 90 = 10(%) – составляет сухое вещество в свежих грибах;

 2)  – масса сухого вещества в свежих грибах;

 3) 100 - 14 = 86 (%)– составляет сухое вещество в сушёных грибах;

  4) ;

   5)  4,3 : 0,86 = 5(кг) – масса сушёных грибов.

Ответ: из 43 кг свежих грибов получится 5 кг сушёных.

 Рассмотрим следующую задачу:

Задача 2.

(картинка с зерном)

Первоначально влажность зерна составляла 20 %. После того как 500 кг зерна просушили, оно потеряло в массе 40 кг. Вычислите влажность просушенного зерна.

Рассуждаем:

Для начала давайте выясним, что понимается в задаче под словосочетанием «влажность зерна». Будем считать, как и в предыдущей задаче, что зерно условно состоит из воды и сухого вещества. Влажность – это количество воды, содержащейся в зерне, выраженное в процентах. Значит, по условию задачи содержание воды в зерне равно 20 %.

Вычислим, сколько же воды в кг содержалось в 500 кг зерна до просушки.

По условию задачи, после того как зерно просушили, оно потеряло в массе 40 кг. При просушке испарилась именно вода, значит, воды в зерне осталось 100 – 40=60 (кг).

Масса самого зерна при этом тоже уменьшилась на 40 кг и стала равной 500 – 40 = 460 (кг).

Вычислим, сколько процентов составляют 60 кг от 460 кг,                       Действительно,    .                 .

Т. о. влажность зерна после просушки  .

Запишем решение по порядку действий:

1)  - масса воды в зерне;

2)100 – 40=60(кг) – масса воды в зерне после просушки;

3)500 – 40=460(кг) – масса зерна после просушки;

 4) влажность зерна.

Ответ: .

Рассмотрим следующую задачу.

Задача 3.

Если высушить свежие груши, то их масса уменьшится на 80 %. Сколько понадобится свежих груш для приготовления 8 кг сушёных?

В задаче нет данных о первоначальной влажности, о влажности сушёных груш, поэтому вычислить массу сухого вещества или массу воды мы пока не можем. Предлагаю ввести переменную и решить задачу с помощью уравнения. Пусть масса свежих груш равна х кг. После сушки масса груш уменьшилась на 80 %, т. е. осталось 20 % первоначальной массы. 20 % от .

По условию масса сушёных груш равна 8 кг, составляем уравнение .

Ответ: масса свежих груш равна 40 кг.

 Согласитесь, что задачи на сушки очень интересные, нестандартные, в них порой трудно спрогнозировать ответ.

Вот, например, следующая задача.

Задача 4.

 (картинка с арбузом)

Арбуз массой 20 кг содержал 99 % воды. Когда он немного усох, содержание воды в нём уменьшилось до 98 %. Какова теперь масса арбуза?

На первый взгляд масса арбуза изменилась мало, но, поверьте, это только на первый взгляд!

Рассуждаем: на сухое вещество в арбузе массой 20 кг приходится 100 % – 99 % = 1 %. Вычислим массу сухого вещества  . В усохшем арбузе на сухое вещество приходится 100 % – 98 % = 2 %. Т. о. 0,2 кг – это 2 % усохшего арбуза. Найдём массу всего арбуза. Воспользуемся правилом нахождения числа по его проценту, выразим 2 % дробью и разделим 0,2 кг на эту дробь.

Я думаю, задача смогла вас удивить!

Запишем решение по порядку действий:

1) 100 % – 99 % = 1 % – процент сухого вещества в арбузе;

2) 1% = 0,01

3)   – масса сухого вещества в арбузе;

4) 100 % – 98 % = 2 % – процент сухого вещества в усохшем арбузе;

5)   

6)   – масса усохшего арбуза.

Ответ: 10 кг.

 В начале урока я говорила вам, что задач и на сушку встречаются на выпускных экзаменах по математике в 9 и 11 классе. Предлагаю решить одну из таких задач из «Открытого банка заданий ЕГЭ».

Задача 5.

Виноград содержит 90 % влаги, а изюм – 5 %.Сколько винограда надо взять, чтобы получить 20 кг изюма?

Вы знаете, что изюм получается в процессе сушки винограда. Значит, мы снова имеем дело с задачей на сушку.

Рассуждаем: виноград содержит 90 % влаги, значит, на сухое вещество приходится 10 % массы винограда.

Изюм содержит 5 % влаги, значит, на сухое вещество приходится 95 % массы изюма.

Найдём массу сухого вещества в изюме  . Сухое вещество в процессе сушки не меняет своей массы, значит, в винограде масса сухого вещества тоже равна 19 кг и составляет 10 % массы винограда. Найдём массу винограда. Воспользуемся правилом нахождения числа по его проценту, выразим 10 % дробью и разделим 19 кг на эту дробь.

.

Запишем решение задачи по порядку:

1)100 % – 90 % = 10 % – процент сухого вещества в винограде;

2)100 % – 95 % = 5 % – процент сухого вещества в изюме;

3) 

4)  – масса сухого вещества в изюме;

5) 10% = 0,1

6) 19 : 0,1 = 190(кг)– масса винограда.

Ответ: 190 кг винограда.

Поздравляю, вы смогли справиться с задачей единого государственного экзамена.

 Дорогие ребята, нам пора подводить итого урока.

Сегодня вы решали, на мой взгляд, одни из самых интересных текстовых задач – задачи на сушку. Давайте вспомним основные моменты, которые вам стоит запомнить.

В задачах на сушку мы принимаем, что грибы, ягоды, фрукты, зерно и т. д. условно состоят из воды и сухого вещества.

Влажность – это количество воды, содержащейся в чём-либо, выраженное в процентах.

В процессе сушки испаряется вода, количество сухого вещества при этом остаётся неизменным.

Успехов вам в самостоятельном решении задач!

Всего доброго!

Дополнительная информация

Рекомендуемые тренажёры:

Решите задачи:

1. Трава при сушке теряет 80 % своей массы. Сколько тонн травы надо накосить, чтобы насушить 14 тонн сена?

2. Первоначально влажность зерна составляла 25 %. После того как 200 кг зерна просушили, оно потеряло в массе 30 кг. Вычислите влажность просушенного зерна.

3. Сухие грибы содержат 12 % воды, а свежие – 90 % воды. Сколько получится сухих грибов из 22 кг свежих грибов?

4. Яблоки, содержащие 70 % воды, потеряли при сушке 60 % своей массы. Сколько процентов воды содержат сушёные яблоки?

5. Свежие фрукты содержат 93 % воды, а высушенные – 16 %. Сколько требуется свежих фруктов для приготовления 21 кг высушенных фруктов?

 Ответы:

1. 70 т

2. 

3. 2,5 кг

4. 25 %

5. 252 кг

 Рекомендуемые тесты:

(Из учебника Математика. 6 класс. Авторы: С. М. Никольский,

М. К. Потапов и др.) Глава 1, §1.7, № 123, 124, 135 (или аналог)