Геометрия. 9 класс

Урок 21. Правильный многоугольник. Окружность, описанная около правильного многоугольника. Окружность, вписанная в правильный многоугольник

Конспект
Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны.
Зная, что сумма всех углов такого n-угольника равна полупроизведению числа сторон на 180 градусов, можно получить формулу для вычисления угла αn правильного n-угольника, разделив общую сумму на число равных между собой углов: αn = (n - 2)/n ∙ 180°
Докажем теорему об окружности, описанной около правильного многоугольника.
Около любого правильного многоугольника можно описать окружность, и притом только одну.

Пусть A1 A2 A3An – правильный многоугольник, О – точка пересечения биссектрис углов A3 и A2.
Докажем, что отрезок OA1 равен OA2 равен OA3 и так далее равен OAn. Так как многоугольник правильный, то угол A2 равен углу A3, а значит, угол 1 равен углу 3. Отсюда следует, что треугольник OA2 A3 равнобедренный, и, следовательно, равны отрезки OA3 и OA2.
Треугольники OA2 A3 и треугольник OA2 A1 равны по двум сторонам и углу между ними (A2 A3 = A1 A3, A2 O – общая сторона и угол 3 равен углу 4, следовательно, OA3 = OA1.
Аналогично можно доказать, что OA4 = OA2, OA5 = OA3 и так далее. Таким образом, доказали, что точка О равноудалена от всех вершин многоугольника, поэтому окружность с центром в точке О и радиусом OA1 является описанной около многоугольника.
Докажем теорему об окружности, вписанной в правильный многоугольник.
В любой правильный многоугольник можно вписать окружность, и притом только одну.
Пусть A1 A2 A3An – правильный многоугольник, О – центр описанной окружности.

В ходе доказательства предыдущей теоремы мы установили, что равны треугольники OA2 A3, OA1 A2OA1 An. Поэтому высоты этих треугольников, проведённые из вершины О, также равны, то есть OH1 = OH2 = ⋯OHn. Отсюда следует, что окружность с центром О и радиусом OH1 проходит через точки H1, H2, … Hn и касается сторон многоугольника в этих точках, то есть эта окружность вписана в данный правильный многоугольник.
Докажем теперь единственность окружности. Предположим, что наряду с окружностью с центром О и радиусом OH1 есть и другая окружность, вписанная в данный многоугольник. Тогда её центр O1 равноудален от сторон многоугольника, то есть точка O1 лежит на каждой из биссектрис углов многоугольника, и следовательно, совпадает с точкой О пересечения этих биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон многоугольника, то есть равен OH1. Таким образом, вторая окружность совпадает с первой. Теорема доказана.
Так как в равнобедренных треугольниках OA2 A3, OA1 A2OA1 An проведенные высоты OH1, OH2, … OHn являются и медианами, то имеет место следствие 1: окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах.
При доказательстве теоремы о вписанной в правильный многоугольник окружности было установлено следствие 2: центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник. Эта точка называется центром правильного многоугольника.
Докажем теперь единственность окружности. Рассмотрим какие-нибудь три вершины многоугольника, например, A1, A2, A3. Так как через эти три точки проходит только одна окружность, то около многоугольника A1 A2 A3An можно описать только одну окружность. Теорема доказана.
Рассмотрим задание из открытого банка ОГЭ.
ABCDEFGHI — правильный девятиугольник. Найдите угол EAI. Ответ дайте в градусах.

Найдем угол правильного девятиугольника, воспользовавшись выведенной формулой нахождения угла.
1) αn = (n - 2)/n ∙ 180°
α9 = (9 - 2)/9 ∙ 180° = 140°
Получаем, что угол правильного девятиугольника равен 140°.
Рассмотрим выпуклый шестиугольник AEFGHI. В нем четыре угла F, G, H, I по 140°, а оставшиеся углы равны между собой в силу того, что девятиугольник правильный.
Воспользуемся известной формулой для нахождения суммы углов выпуклого шестиугольника AEFGHI:
2) Sn = (n - 2) ∙ 180°
S6 = (6 - 2) ∙ 180° = 720°.
Получаем, что сумма углов выпуклого шестиугольника равна 720°.
Для нахождения искомого угла нужно найти половину разности 720° и четырех углов по 140°.
3) ∠EAI = (720° - 4 • 140°)/2 = 80°
Ответ: 80°

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6 angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6