Химия. 11 класс

Урок 8. Химические источники тока. Ряд стандартных электродных потенциалов

Конспект урока

Химия, 11 класс

Урок № 8. Химические источники тока. Ряд стандартных электродных потенциалов

Перечень вопросов, рассматриваемых в теме: урок посвящён устройству и принципу работы гальванического элемента и других химических источников тока. Учащиеся получат представление о ряде электродных потенциалов и возможностях его использования.

Глоссарий

Гальванический элемент - химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока.

Электрод - электрический проводник, имеющий электронную проводимость и находящийся в контакте с ионным проводником — электролитом. В электрохимии — это часть электрохимической системы, включающая в себя проводник и окружающий его раствор

Анод - электрод, на котором происходит процесс окисления

Катод - электрод, на котором происходит процесс восстановления

Аккумулятор - химический источник тока многоразового действия

Топливный элемент - устройство, обеспечивающее прямое преобразования химической энергии в электрическую

Электрохимия - наука, которая изучает закономерности взаимного превращения химической и электрической форм энергии

Ряд стандартных электродных потенциалов - ряд металлов, расположенных в порядке возрастания значения их стандартных потенциалов

Стандартные условия - температура 25оС, концентрация солей 1моль/л, давление 0,1МПа

Стандартный водородный электрод - электрод, использующийся в качестве электрода сравнения при различных электрохимических измерениях

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Химические источники тока

Рассмотрим знакомую нам окислительно-восстановительную реакцию. В раствор сульфата двухвалентной меди опустим цинковую пластинку. Со временем на поверхности цинка образуется красноватая пленка кристаллической меди. Синяя окраска раствора постепенно ослабевает. Это говорит о том, что протекает химическая реакция.

CuSO4 + Zn = ZnSO4 + Cu

Cu2+ + Zn = Zn2+ + Cu

Молекулы воды отрывают ион цинка. Отдавая электроны, цинк является восстановителем. Ион меди – окислитель - принимает электроны. Электроны передаются от цинка к меди в месте соприкосновения металлов.

Zn – 2e = Zn2+

Cu2+ + 2e = Cu

Давайте немного изменим условия проведения реакции. Цинковую пластинку опустим в сосуд с раствором сульфата цинка. Медную поместим в другой сосуд с раствором сульфата меди. Соединим пластинки с помощью металлического проводника. Теперь на цинковой пластинке идет окисление атомов цинка, а на медной восстанавливаются ионы меди. Электроны для их восстановления передаются теперь не напрямую, а по проводнику. Направленное движение электронов по этой внешней цепи и есть не что иное, как электрический ток.

Таким образом, произошло превращение энергии, полученной в результате химической реакции в электрическую. Устройство, в котором это осуществилось, получило название гальванический элемент.

Металлические пластинки или стержни называются электродами. Электроны перемещаются по внешней цепи от анода (цинка) к катоду (меди).

Образовавшиеся на аноде ионы цинка выходят в раствор и придают ему избыточный положительный заряд. В это же время у катода катионы меди восстанавливаются (принимают электроны), а оставшиеся в растворе анионы SO42- заряжают раствор отрицательно. Это препятствует дальнейшему течению процесса.

Чтобы не допустить этого, соединим сосуды стеклянной трубкой, которую заполним раствором хлорида калия с желатином. Теперь анионы будут двигаться в сторону цинка, а катионы – наоборот. Так будет поддерживаться электронейтральность растворов.

Гальванический элемент будет продолжать работу до полного растворения цинкового электрода или до восстановления всех ионов меди.

Впервые установку, в которой химическая реакция породила электрический ток, собрал Алессандро Вольта в 1800 году. Название «гальванический элемент» она получила позднее.

Теперь наука, которая изучает химические процессы, проходящие под действием электрического тока, а также процессы, в результате которых энергия химических реакций преобразуется в электрическую энергию, называется электрохимия.

Химические источники тока применяются очень широко. Знакомые нам «батарейки» - это разные варианты гальванических элементов. К сожалению, разрядившаяся батарейка уже не может быть восстановлена.

Этого недостатка лишены аккумуляторы, которые тоже представляют собой химические источники тока. Они устроены так, что израсходовав в процессе работы материалы электродов и электролит, способны вновь восстановить рабочие свойства после зарядки.

В свинцовом аккумуляторе чередуются решетчатые пластины, заполненные губчатым свинцом и диоксидом свинца. Электролитом служит серная кислота. Во время работы аккумулятора металлический свинец окисляется, а диоксид свинца восстанавливается.

Pb + SO42- - PbSO4 + 2e-

PbO2 + SO42- + 4H+ + 2e- = PbSO4 + 2H2O

Когда аккумулятор заряжают, то подключают его таким образом, чтобы ток шёл в направлении, противоположном тому, в котором двигались электроны во время работы. Благодаря этому, процессы окисления и восстановления на электродах поворачивают вспять. Теперь протекают обратные реакции, в результате которых снова появляются свинец, диоксид свинца и серная кислота.

разрядка

Pb + PbO2 + 2H2SO4 ⇄ 2PbSO4 + 2H2O

зарядка

Аккумулятор снова готов к работе.

Еще один источник преобразования химической энергии в электрическую – топливный элемент. Он подобен гальваническому элементу с той лишь разницей, что реагенты постоянно поступают в него извне. Поэтому он не разряжается и не требует электричества для повторной зарядки. Примером может служить водородный топливный элемент, перспективный для водородной энергетики.

Ряд стандартных электродных потенциалов

Вернемся к электродам и посмотрим поближе, что происходит там, где металл граничит с раствором.

Молекулы воды поляризованы и способны отрывать ионы металла. Удерживающиеся на поверхности электроны образуют отрицательно заряженный слой. К нему притягиваются из раствора катионы, образуя второй слой - положительный. Возникающую в двойном слое разность потенциалов называют электродным потенциалом, но определить его величину напрямую невозможно.

Однако есть такой электрод, которым пользуются для сравнения электродных потенциалов разных металлов. Он сделан из платины, но называется водородным, потому что водород пропускается через кислоту, в которой находится электрод. Благодаря платине, выступающей как катализатор, часть молекул водорода распадаются на атомы, которые окисляются на границе с кислотой. Одновременно идет и обратная реакция.

H2 ⇄2H+ + 2e

Разность потенциалов, возникающая в двойном электрическом слое водородного электрода, условно принимается за ноль.

Потенциал металла, измеренный относительно стандартного водородного электрода при концентрации ионов металла 1 моль/л и температуре раствора, равной 25 оС, называют стандартным электродным потенциалом металла.

Соберём гальванический элемент, соединив электрод из исследуемого металла со стандартным водородным электродом. Электролитом для металлического электрода послужит раствор соли этого металла, а для водородного, как всегда, кислота.

Зная, что электродвижущая сила вычисляется как разность потенциалов двух электродов, и, подставив ноль в случае водородного электрода, мы видим, что измеренная ЭДС и будет потенциалом исследуемого электрода.

Металлы, расположенные в порядке возрастания значений их стандартных потенциалов, составляют электрохимический ряд напряжений металлов или ряд стандартных электродных потенциалов. Еще одно название – ряд активности металлов.

Имея в своем распоряжении ряд напряжений, мы можем характеризовать химические свойства металлов:

  1. Чем меньше значение электродного потенциала металла, тем больше его восстановительная способность;
  2. Каждый металл, начиная с магния, вытесняет все следующие за ним металлы из растворов их солей (это касается металлов, не взаимодействующих с водой);
  3. Металлы, стоящие в ряду напряжений до водорода, вытесняют его из разбавленных кислот (кроме азотной).

ПРИМЕРЫ И РАЗБОР РЕШЕНИЯ ЗАДАНИЙ ТРЕНИРОВОЧНОГО МОДУЛЯ

  1. Решение задачи на использование электрохимического ряда напряжений металлов

Условие задачи: Учитель загадал металл и дал ученикам три подсказки:

  • из соли ртути он вытеснит ртуть;
  • но не вытеснит водород из растворов кислот;
  • вам отгадать поможет вполне таблица, висящая на стене.

- Конечно, это ___, - засмеялись ученики, - только один металл подходит под ваше описание.

Вставьте в текст название металла.

Шаг первый: из таблиц выбираем «Электрохимический ряд напряжений металлов»

Шаг второй: находим металлы левее ртути, т.к. они вытесняют ртуть из растворов солей.

Шаг третий: из выбранных металлов находим те, что расположены правее водорода, т.к. они не вытесняют водород из растворов кислот.

Этим условиям отвечает только один металл – медь.

Ответ: Cu

2. Решение задачи на расчеты по уравнению реакции

Условие задачи: Мастер решил покрыть железную фигурку слоем меди и поместил её в сосуд с раствором медного купороса. Он знал, что на изготовление фигурки было использовано ровно 120 г железа. Когда мастер достал фигурку из раствора, её масса оказалась уже 121,56 г. Сколько граммов меди осело на фигурке?

Шаг первый: Запишем уравнение реакции

CuSO4 + Fe = FeSO4 + Cu

Шаг второй: Выразим массу железа через массу меди.

Из уравнения реакции следует, что количество вещества выделившейся меди равно количеству вещества прореагировавшего железа

m(Fe)/M(Fe) = m(Cu)/M(Cu)

m(Fe)/56 = m(Cu)/64, тогда

m(Fe) = 56m(Cu)/64

Шаг третий: Рассчитаем массу меди.

Так как масса пластинки уменьшилась на величину массы прореагировавшего железа и увеличилась на величину массы выделившейся меди, можно записать равенство:

120 – m(Fe) + m(Cu) = 121,56

m(Cu) – m(Fe) = 1,56

m(Cu) - 56m(Cu)/64 = 1,56

0,125m(Cu) = 1,56

m(Cu) = 12,48 г

Ответ: 12,48

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6