Алгебра и начала математического анализа. 11 класс

Урок 24. Вычисление площадей с помощью интегралов

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №24. Вычисление площадей с помощью интегралов.

Перечень вопросов, рассматриваемых в теме

1) Нахождение площади фигуры, ограниченной графиками функций с помощью определенного интеграла.

2) Нахождение площади криволинейной трапеции с помощью формулы Ньютона – Лейбница

3) Решение задач, с помощью формулы Ньютона – Лейбница

Формула Ньютона – Лейбница

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

Криволинейной трапецией называется фигура, ограниченная графиком непрерывной и не меняющей на отрезке [а;b] знака функции f(х), прямыми х=а, x=b и отрезком [а;b].

Отрезок [a;b] называют основанием этой криволинейной трапеции

формула Ньютона – Лейбница

Если в задаче требуется вычислить площадь криволинейной трапеции, то ответ всегда будет положительный. Если требуется, используя чертеж, вычислить интеграл, то его значение может быть любым. ( зависит от расположения криволинейной трапеции)

Примеры и разбор решения заданий тренировочного модуля

№1 Вычислите площадь фигуры, ограниченной линиями y= x, y = 5 – x, x = 1, x = 2, используя определенный интеграл.

Решение. Воспользуемся формулой Ньютона-Лейбница.

Сначала находим первообразную функцию  F(x) . Далее подставляем значение верхнего предела в первообразную функцию: F(b).

Затем подставляем значение нижнего предела в первообразную функцию: F(а) .

Рассчитываем разность F(b)  - F(а)    , это и будет ответ

№2. Найти площадь фигуры, ограниченной линиями у=4-х2,у=3х, у=0 и находящейся в 1-й четверти.

Решение: Воспользуемся формулой Ньютона-Лейбница.

Сначала находим первообразную функцию  F(x) . Далее подставляем значение верхнего предела в первообразную функцию: F(b)  .

Затем подставляем значение нижнего предела в первообразную функцию: F(а) .

Рассчитываем разность F(b)  - F(а)    , это и будет ответ.

Решение. S=SOAB +SABC

№3. Найти площадь криволинейной трапеции (х-1)2, ограниченной линиями х=2 и х=1, осью 0х

Решение:

Воспользуемся формулой Ньютона-Лейбница.

Сначала находим первообразную функцию  F(x) . Далее подставляем значение верхнего предела в первообразную функцию: F(b)  .

Затем подставляем значение нижнего предела в первообразную функцию: F(а) .

Рассчитываем разность F(b)  - F(а), это и будет ответ.

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6