Алгебра и начала математического анализа. 10 класс

Урок 50. Тригонометрические неравенства

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №50. Тригонометрические неравенства.

Перечень вопросов, рассматриваемых в теме

  • решение простейших тригонометрических неравенств с помощью тригонометрической окружности;
  • решение тригонометрических неравенств, сводимых к квадратным;
  • решение тригонометрических неравенств методом интервалов.

Глоссарий по теме

  1. Синусом угла называется ордината точки, полученной поворотом точки (1;0) вокруг начала координат на угол . Обозначается
  2. Косинусом угла называется абсцисса точки, полученной поворотом точки (1;0) вокруг начала координат на угол . Обозначается
  3. Тангенсом угла называется отношение к

Угол может выражаться и в градусах и в радианах.

  1. Арккосинусом числа называется такое число α, что: . Арккосинус числа m обозначают: .
  2. Арксинусом числаназывается такое число α, что: и . Арксинус числа m обозначают:.
  3. Арктангенсом числа m называется такое число α, что: и . Арктангенс числа m обозначают: .

Основная литература:

Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е., Шабунин М.И. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни под ред. А.Б. Жижченко. – 2-е изд. – М.: Просвещение, 2010. – 336 с.: ил. – ISBN 978-5-09-022250-1, сс. 334-337.

Шахмейстер А.Х. Тригонометрия. М.: Издательство МЦНМО : СПб.: «Петроглиф» : «Виктория плюс», 2013. – 752 с.: илл. ISBN 978-5-4439-0050-6, сс. 353-367.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru

Теоретический материал для самостоятельного изучения

1. Рассмотрим простейшие тригонометрические неравенства.

Начнем рассматривать с неравенства .

Из рисунка 1 видно, что если a>1, то решений данное неравенство не имеет.

Рисунок 1 – Точки пересечения прямой y=a (a>1) с тригонометрической окружностью

Если a=1, то решений такое неравенство также не имеет (рис.2). Однако, если мы изменим знак на (получим неравенство , то решением его будет множество точек, в которых . Это числа .

Рисунок 2 – Общие точки прямой y=1 с тригонометрической окружностью

Рассмотрим теперь значение (рис.3).

Рисунок 3 – Решение неравенства

Видим, что множество решений данного неравенства представляет собой дугу, начало которой в точке (1) , конец в точке (2) N(πarcsina) . В зависимости от знака неравенство (строгое оно или нестрогое) промежуток представляет собой интервал или отрезок. Далее множество промежутков получается прибавлением :

(для строгого неравенства) – множество интервалов;

(для нестрогого неравенства) – множество отрезков.

Если значение a= – 1,то получим следующую картинку (рис. 4):

Рисунок 4 – Общие точки прямой y= – 1 с тригонометрической окружностью

Видно. что если неравенство нестрогое, то решением неравенства является любое действительное число. Если неравенство строгое, то решением неравенства является любое действительное число, кроме чисел вида .

Наконец, если , то решением неравенства является любое действительное число.

Решение неравенства рассмотрим более коротко.

Очевидно, что если , то решением неравенства является любое действительное число.

Если , то решением неравенства является любое действительное число, а решением неравенства является любое действительное число, за исключением чисел вида .

Если , то решением неравенства являются числа вида , а неравенство решений не имеет. То же самое можно сказать о решении неравенств и в случае .

Случай рассмотрим более подробно (рис. 5).

Рисунок 5 – Решение неравенства

Решение неравенства для :

(для строгого неравенства) - множество интервалов;

(для нестрогого неравенства) - множество отрезков.

2. Теперь рассмотрим решение неравенств и .

Рассуждая по аналогии с неравенствами относительно синуса, можем сделать вывод, что для неравенство решений не имеет, а решением неравенства является любое действительное число.

Для неравенство решений не имеет, а решением неравенства является любое действительное число.

Рассмотрим случай более подробно.

Рассмотрим решение неравенства (рис. 6).

Рисунок 6 – Решение неравенства

Множество решений этого неравенства:

.

Теперь рассмотрим неравенство (рис. 7).

Рисунок 7 – Решение неравенства

Множество решений этого неравенства:

.

3. Теперь рассмотрим решение простейших неравенств и .

Сначала рассмотрим неравенство (рис. 8).

Рисунок 8 – Решение неравенства

Множество решений этого неравенства:

.

Соответственно, множество решений неравенства :

.

Примеры и разбор решения заданий тренировочного модуля

Пример 1.

Решите неравенство. Заполните пропуски

Решение:

Ведем новую переменную: .

Вспомогательное неравенство имеет вид:

, .

Вернемся к исходной переменной: .

Второе неравенство решений не имеет. Решением первого неравенства является:

.

Ответ: .

Пример 2.

Решите неравенство. Найдите коэффициенты

Решение:

Выразим

Рисунок 9 – решение неравенства

Ответ:

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6