Естествознание. 10 класс

Урок 42. Движение как качественное изменение. Химические реакции

Конспект урока

Естествознание, 10 класс

Урок 42. Движение как качественное изменение. Химические реакции

Перечень вопросов, рассматриваемых в теме: Как во времени протекает химическая реакция? Что такое механизм химической реакции и как реакции можно классифицировать по механизму их протекания? Как определяется скорость химической реакции для различных процессов? Что такое кинетическое уравнение реакции и в чём его смысл? Как различные факторы влияют на скорость реакции? Каков механизм действия катализатора?

Глоссарий по теме:

Химическая кинетика – это раздел химической науки, изучающий механизм и скорость химической реакции.

Скорость химической реакции определяется изменением количества реагирующих веществ или продуктов реакции за единицу времени в единице объёма (для гомогенных систем) или на единице поверхности (для гетерогенных систем).

Закон действующих масс – при постоянной температуре скорость данной реакции пропорциональна произведению концентраций реагирующих веществ.

Механизм химической реакции – это последовательность элементарных стадий процесса, в результате которого исходные вещества превращаются в продукты реакции.

Энергия активации – это средняя избыточная энергия (по сравнению со средней энергией движения), которой должны обладать реагирующие частицы (атомы, молекулы), чтобы преодолеть энергетический барьер, разделяющий в химической реакции реагенты (исходные вещества) и продукты (конечное состояние).

Правило Вант-Гоффа – при повышении температуры на каждые 100 С скорость реакции увеличивается в среднем в 2 – 4 раза.

Катализ – это изменение скорости реакции под действием катализаторов.

Катализатор (от греч. katalysis – разрушение) – это вещества, изменяющие скорость реакции, участвующие в промежуточных стадиях реакции, но при этом не расходующиеся.

Ферменты (от лат. fermentum – закваска) – это вещества, катализирующие биохимические реакции в организмах.

Основная и дополнительная литература по теме урока:

1. Естествознание. 10 класс: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017. – С. 184-189.

2. Энциклопедия для детей. Том 17. Химия. / Глав. ред. В.А. Володин. – М.: Аванта+, 2000. – С. 116-126; 568-576.

3. Савинкина Е.В. История химии. Элективный курс: Учебное пособие / Е.В. Савинкина, Г.П. Логинов, С.С. Плоткин. – М.: БИНОМ. Лаборатория знаний, 2007. – С. 139-144.

Открытые электронные ресурсы по теме урока:

Левченков С.И. Химическая кинетика // Краткий очерк истории химии: Учебное пособие для студентов химфака РГУ. URL:

http://www.physchem.chimfak.rsu.ru/Source/History/Sketch_7.html#Кинетика

Теоретический материал для самостоятельного изучения

Многообразие объектов Вселенной отражается в многообразии видов и форм движения. Качественные изменения, которые происходят в ходе химических превращений, можно интерпретировать как особый вид движения, а саму химическую реакцию рассматривать как определенную химическую форму движения. Изучением того, как во времени протекают химические процессы, занимается химическая кинетика – область химической науки, становление которой началось со второй половины XIX века.

Химические процессы протекают с различной скоростью: бронзовый памятник во влажном воздухе медленно покрывается голубоватым налетом, значительно быстрее покрывается ржавчиной железный предмет, лежащий в воде, долька яблока через несколько часов покрывается бурой пленкой, а образование осадка при сливании растворов, например, сульфата натрия и хлорида бария, происходит очень быстро. Для количественной характеристики скорости химической реакции используют не время её протекания, а скорость изменения количества вещества (в моль), вступающего в реакцию или образующегося в ходе реакции. Таким образом, скорость химической реакции определяется изменением количества реагирующих веществ или продуктов реакции за единицу времени в единице объёма (для гомогенных систем) или на единице поверхности (для гетерогенных систем). Напомним, что гомогенная система состоит из одной фазы, а гетерогенная система – из нескольких фаз, разграниченных между собой поверхностями раздела. Наиболее часто в химии рассматривается зависимость концентрации веществ от времени, поэтому скорость реакции можно определять как изменение концентрации одного из реагирующих веществ или одного из образующихся в ходе реакции веществ в единицу времени.

𝑣 = ± ∆с/∆t, где 𝑣 – скорость реакции, ∆с – изменение концентрации вещества, ∆t – промежуток времени, в котором определяют скорость реакции. Если скорость определяют по изменению концентрации реагирующего вещества, которая в ходе реакции уменьшается, то перед формулой ставят знак «–», если скорость определяется по изменению концентрации продукта реакции, которая в ходе реакции увеличивается, то перед формулой ставят знак «+». Скорость химической реакции изменяется во времени, поэтому по приведенной формуле можно вычислить только среднюю скорость реакции в определенном интервале времени. Графическое изображение зависимости концентрации реагентов от времени называется кинетической кривой. С помощью кинетической кривой можно графически определить истинную скорость реакции в каждый момент времени.

Чтобы управлять химической реакцией – замедлять или ускорять химические процессы, необходимо знать, от чего зависит скорость реакции. Особенно важно знать зависимость скорости реакции от концентрации реагирующих веществ. Впервые скорость химической реакции и её зависимость от концентрации исходных веществ исследовал немецкий химик Людвиг Фердинанд Вильгельми (1812 – 1864), изучая гидролиз сахарозы. В своей работе, опубликованной в 1850 году, он привел формулу, отражающую зависимость скорости реакции от концентрации реагирующих веществ – первое кинетическое уравнение химической реакции. В 1864 – 1867 гг. норвежские учёные Като Максимилиан Гульдберг (1836 – 1902) и Петер Вааге (1833 – 1900) опубликовали работы, в которых на основе сотен экспериментов доказали, что скорость реакции пропорциональна произведению «действующих масс» реагентов, т.е. (концентрациям). Таким образом, количественно зависимость между скоростью реакции и концентрацией определяется основным законом химической кинетикизаконом действующих масс: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам в уравнении реакции.

Для некоторой реакции xA + yB → zD эта зависимость будет иметь вид: 𝑣 = k∙CAx∙CBy, где СА и СВ – молярные концентрации веществ А и В, k – коэффициент пропорциональности, называемый константой скорости химической реакции, численно равный скорости реакции при концентрации всех реагирующих веществ, равных 1 моль/л и определяемый экспериментально. Зависимость скорости реакции от концентрации реагирующих веществ определяется экспериментально и называется кинетическим уравнением химической реакции. Скорость гетерогенных реакций, протекающих на границе раздела фаз не зависит от концентрации. Как правило, при низких температурах скорость гетерогенных реакций зависит от площади поверхности раздела фаз и температуры.

Превращение одних веществ в другие не является одномоментным событием, – это сложный процесс, который развертывается во времени и пространстве. Еще в XIX веке учёные определили, что химические реакции в подавляющем большинстве являются многостадийными процессами. Последовательность элементарных стадий процесса, в результате которого исходные вещества превращаются в продукты реакции, называется механизмом реакции. По числу стадий реакции подразделяются на простые (элементарные) и сложные. Простые реакции осуществляются в одну стадию, химическое уравнение таких реакций полностью отражает какие и сколько частиц участвуют непосредственно в элементарном акте химического взаимодействия. В реакциях изомеризации или диссоциации, например, происходит химическое превращение одной молекулы. Есть простые реакции, элементарный акт которых осуществляется при столкновении двух частиц (одинаковых или разных) или даже трёх частиц. Сложные реакции осуществляются в несколько стадий, каждая из которых является простой реакцией. Каждая из стадий протекает со своей скоростью. Скорости отдельных стадий могут существенно отличаться друг от друга. Скорость сложной реакции в целом будет определяться скоростью самой медленной стадии, которая называется лимитирующей. Механизмы химических реакций определяются экспериментально.

Скорость химической реакции зависит от температуры. Впервые влияние температуры на скорость реакции было учтено Якобом Генриком Вант-Гоффом (1852 – 1911), им было сформулировано эмпирическое правило (правило Вант-Гоффа): при повышении температуры на каждые 10°С скорость реакции увеличивается в 2 – 4 раза. Однако это правило носит приближенный характер и применимо лишь в узком интервале температур. Более точно зависимость скорости химической реакции от температуры была определена шведским химиком Сванте Августом Аррениусом (1859 – 1927), он ввёл понятие энергии активации и сформулировал закон температурной зависимости для константы скорости простых реакций.

Многие химические процессы в растворе или газовой фазе происходят при столкновении частиц реагирующих веществ. Число таких соударений огромно. Если бы все соударения частиц приводили к химическому взаимодействию, то реакции протекали бы мгновенно, однако этого не происходит. Это объясняется тем, что не все соударения приводят к химическому взаимодействию. Чтобы соударение было эффективным (привело к химическому взаимодействию) столкнувшиеся частицы должны обладать достаточной энергией для разрыва или ослабления химических связей в молекулах реагирующих веществ. В результате происходит образование некоторого промежуточного неустойчивого комплекса (активированного комплекса) с последующим перераспределением электронной плотности и образованием продуктов реакции. Средняя избыточная энергия (по сравнению со средней энергией движения), которой должны обладать реагирующие частицы (атомы, молекулы), чтобы преодолеть энергетический барьер, разделяющий в химической реакции реагенты (исходные вещества) и продукты (конечное состояние) называется энергией активации. Так как при повышении температуры доля частиц, обладающих избыточной энергией увеличивается, то увеличивается и число эффективных соударений и, следовательно, константа скорости реакции.

На скорость реакции могут оказывать влияние вещества, которые получили название катализаторов. Еще с начала XIX века химики обратили внимание на необычные химические реакции, для протекания которых требовалось добавление некоторых веществ. Эти вещества в реакциях не расходовались, но без их добавления реакции не протекали. В 1835 году все известные на тот момент каталитические исследования обобщил шведский химик Йёнс Якоб Берцелиус (1779 – 1848), он же первым использовал термин «катализ» (от греч. katalysis – разрушение). Однако, механизм влияния этих добавок был непонятен химикам XIX века. Только в самом конце XIX века немецкий химик Вильгельм Фридрих Оствальд (1853 – 1932) сумел дать современные определения катализа и катализатора. Появление современных теорий катализа относится к 20-м годам XX века. Первой из них была мультиплетная теория, которую разработал российский химик Алексей Александрович Баландин (1898 – 1967).

Катализаторы – это вещества, изменяющие скорость реакции, участвующие в промежуточных стадиях реакции, но при этом не расходующиеся. Изменение скорости реакции под действием катализаторов называют катализом. Известны различные виды катализа. Катализ может быть положительным – увеличивать скорость реакции, или отрицательным – уменьшать скорость реакции. Отрицательный катализ часто называют ингибированием, а отрицательные катализаторы, замедляющие течение реакции – ингибиторами. Катализ, при котором катализатор образует одну фазу с реагирующими веществами, называют гомогенным катализом. Если катализатор образует самостоятельную фазу и реакция происходит на поверхности катализатора, то катализ называется гетерогенным катализом. Хорошо известный Вам из школьного курса процесс получения оксида серы (VI) SO3 из оксида серы (IV) SO2 (2SO2 + O2 = 2SO3 + Q) можно проводить с использованием разных катализаторов.

В начале XX века этот процесс осуществляли в газовой фазе с использованием оксида азота (II) NO в качестве катализатора – это пример гомогенного катализа. Если в качестве катализатора использовать оксид ванадия (V) V2O5, который является твердым веществом, то реакция протекает на его поверхности – это пример гетерогенного катализа. Гетерогенный катализ может быть усилен добавлением промоторов – веществ, которые сами не являются катализаторами, но повышают активность катализатора данной реакции. Так, для синтеза аммиака, идущего с использование железного катализатора, используется добавление оксидов алюминия и калия. Однако, есть вещества, которые наоборот снижают активность катализатора. Такие вещества называются каталитическими ядами. Так, например, платиновый катализатор очень чувствителен по отношению к соединениям серы и селена.

Важными свойствами катализаторов является их специфичность и селективность. Под специфичностью катализатора понимается его способность ускорять только какую-то одну группу реакций и никак не влиять на скорость других реакций. Хорошо известный Вам пример: платина Pt и никель Ni являются катализаторами процессов гидрирования. Другое свойство катализаторов – селективность (избирательность) заключается в способности катализаторов ускорять только одну из возможных при данных условиях параллельных реакций. На этом свойстве катализаторов основаны способы получения разных продуктов из одних и тех же исходных веществ. Например, из этилового спирта C2H5OH в присутствии оксида алюминия Al2O3 получают этилен CH2=CH2, а в присутствии меди Cu – уксусный альдегид CH3COH. Наибольшей селективностью отличаются биологические катализаторы белковой природы – ферменты. Кроме того, ферменты обладают высокой активностью, что объясняется значительным снижением энергии активации биохимического процесса ферментами.

В чем же заключается действие катализатора? Оказывается, катализаторы снижают энергию активации реакции, в результате чего увеличивается число частиц, обладающих энергией, достаточной для химического взаимодействия. Катализаторы участвуют в образовании активированного комплекса, требующего меньшей энергия активации.

Таким образом, превращение одних веществ в другие – это процесс, развертывающийся во времени, т. е. имеющий свою временную структуру, которая выражена механизмом реакции. Вместе с тем механизм реакции учитывает не только изменения в составе веществ-участников реакции, но и изменение положений атомов в пространстве по мере протекания реакции. Поэтому можно говорить о пространственно-временной структуре реакции. Любое превращение одних веществ в другие, т.е. химическую реакцию, можно рассматривать как качественное изменение и особую форму движения.

Выводы:

1. Скорость химической реакции определяется изменением количества реагирующих веществ или продуктов реакции за единицу времени в единице объёма (для гомогенных систем) или на единице поверхности (для гетерогенных систем).

2. На скорость реакции оказывают влияние: природа реагирующих веществ, их концентрация (для гомогенных систем), площадь поверхности (для гетерогенных систем), температура и наличие катализатора.

3. Количественно зависимость между скоростью реакции и концентрацией определяется основным законом химической кинетики – законом действующих масс: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.

4. Большинство химических реакций являются многостадийными процессам, механизм которых определяется экспериментально. Под механизмом химической реакции понимают последовательность элементарных стадий процесса, в результате которых исходные вещества превращаются в продукты реакции.

5. Многие химические реакции являются каталитическими, т.е. для их осуществления необходимы катализаторы – вещества, изменяющие скорость реакции, участвующие в промежуточных стадиях реакции, но при этом не расходующиеся.

6. Химическая реакция – имеет сложную пространственно-временную структуру, что позволяет её рассматривать не только как качественное изменение веществ, но и особую форму движения.

Примеры и разбор решения заданий тренировочного модуля:

1. Укажите верные утверждения:

Утверждение

Правильный ответ и пояснение

А. Химическое уравнение не отражает механизм протекания реакции.

Правильное утверждение. Химическое уравнение не отражает механизм протекания реакции, механизм реакции определяется экспериментально.

Б. Катализатор ускоряет реакцию, но сам в реакции не участвует.

Неправильное утверждение. Катализаторы – вещества, изменяющие скорость реакции, участвующие в промежуточных стадиях реакции, но при этом не расходующиеся.

В. Закон действующих масс выражает количественную зависимость скорости реакции от концентрации реагирующих веществ.

Правильное утверждение. Количественно зависимость между скоростью реакции и концентрацией определяется основным законом химической кинетики – законом действующих масс: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.

2. Установление соответствие между элементами двух множеств. К каждой позиции первого столбца подберите соответствующую позицию второго.

Утверждение

Теория

1. Процесс гидрирования этилена СН2=СН2 c использованием никеля Ni в качестве катализатора.

А. Гомогенный катализ

Б. Гетерогенный катализ

2. Процесс получения оксида серы (VI) SO3 из оксида серы (IV) SO2 с использованием оксида азота (II) NO в качестве катализатора.

3. Процесс получения оксида серы (VI) SO3 из оксида серы (IV) SO2 с использованием оксида ванадия (V) V2O5 в качестве катализатора.

Правильный ответ:1 – Б; 2 – А; 3 – Б.

Утверждение

Теория

1. Процесс гидрирования этилена СН2=СН2 c использованием никеля Ni в качестве катализатора.

Б. Гетерогенный катализ

2. Процесс получения оксида серы (VI) SO3 из оксида серы (IV) SO2 с использованием оксида азота (II) NO в качестве катализатора.

А. Гомогенный катализ

3. Процесс получения оксида серы (VI) SO3 из оксида серы (IV) SO2 с использованием оксида ванадия (V) V2O5 в качестве катализатора.

Б. Гетерогенный катализ

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6