Информатика. 11 класс

Урок 9. Компьютерное моделирование

Конспект урока

Информатика, 11 класс. Урок № 9.

Тема — Компьютерное моделирование

Любое явление или объект обладает огромным количеством свойств, характеристик или параметров, охватить которые бывает очень сложно, поэтому приходится проводить упрощение такого объекта, отбрасывая несущественные детали. Иными словами, строить модель.

Под моделью мы будем понимать любой материальный или идеальный объект, обладающий некоторыми свойствами, совпадающими со свойствами реального объекта.

При этом исследователь будет выбирать такие свойства, которые являются существенными для изучаемого объекта. Например, при проектировке здания архитектору важен внешний вид объекта, для инженера — прочность и материалы, для инженера-геолога – нагрузка на грунт. Поэтому модель одного и того же здания будет различна.

Давайте рассмотрим еще один класс моделей — это математические модели. Например, все геометрические объекты (круг, треугольник, прямая) являются моделями. В окружающем нас мире не существует таких объектов.

Например, стол. Можем ли мы сказать, что он идеально прямоугольный? Нет, конечно, так как каждый край стола не может быть идеальной прямой линией. Однако, во многих случаях можно считать, что это так.

Подобные рассуждения справедливы и для всех других математических объектов — вектор, числа, функций, производных, интегралов.

Будем считать, что математическое моделирование — это описание реальной ситуации с помощью математических терминов, математических операций и математической символики.

Основоположником математического моделирования в России был академик Российской академии наук Александр Андреевич Самарский, который первый предложил использовать математические модели, реализуемые с помощью компьютера и дальнейшее их исследование. Важнейшим преимуществом использования таких моделей заключается в невысоких финансовых затратах и относительной простоте. При этом практика является и остается критерием истинности и завершающим звеном в исследовании.

Моделирование требует четкого плана действий. На первом этапе формируется задача, которую необходимо решить с помощью модели, далее разрабатывается некий математический эквивалент исследуемого объекта, после чего происходит тестирование такой модели и сравнение с практическими знаниями. Если модель на тестовом этапе не противоречит практике, то проводится эксперимент с моделью, после чего анализируются результаты и делаются выводы. Давайте рассмотрим все этапы моделирования на примере колеса, вращающегося внутри более большого:

ЭТАП 1. Постановка задачи

В колесе радиуса R катится колесо радиуса r. Какую траекторию описывает точка, расположенная на ободе колеса r?

ЭТАП 2. Математическая модель

Траектория движения этой точки находится по формулам:

где φ изменяется от 0 до 2π (угол смещения колеса r).

Вывод уравнения движения смотри по ссылке .

ЭТАП 3. Алгоритм решения

Для получения траектории движения колеса, нам необходимо изменять значение φ от 0 до 30. Вычислять координаты и представлять их на графике. Попробуем это сделать с помощью программы Excel.

ЭТАП 4. Разработка программы. Тестирование

Создадим таблицу по образцу:

В столбец А занесем значения угла φ от 0 до 6.28 с шагом 0.01.

Запишем в ячейку а в ячейку

С помощью маркера заполнения распространим эти формулы до конца таблицы.

По значениям столбцов B и С построим точечный график:

*Если Excel выдает ошибку «#ДЕЛ/0» — введите в ячейки F3 и F4 значения.

ЭТАП 5. Вычислительный эксперимент

Изменяя значения в ячейках F3 и F4, получи различные картинки:

ЭТАП 6. Анализ результатов. Выводы

Вычислительный эксперимент показал, что вид фигуры зависит от отношения радиусов маленького и большого колеса. Такие фигуры носят названия — ГИПОЦИКЛЫ.

Самостоятельная работа:

Попробуйте самостоятельно получить следующие фигуры:

— Фигуры Лиссажу

— Эпитрохойда

— Гипотрохойда

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6