Алгебра и начала математического анализа. 11 класс

Урок 4. Свойства и график функции y=sinx

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №4. Свойства и график функции .

Перечень вопросов, рассматриваемых в теме

  • Изучение свойств графика функции ;
  • Определение промежутков монотонности, наибольшего и наименьшего значения, нулей функции ;
  • Определение свойств и положение графика тригонометрических функций вида и
  • Построение графика функции
  • Объяснять зависимость свойств и положения графика функции вида и от значения коэффициентов а, k, b;
  • Демонстрирование уверенного владения свойствами функции .

Глоссарий по теме

Синусоидой называется множество точек плоскости, которое в некоторой системе координат является графиком функции , где a≠0.

Число │a│ называется амплитудой.

Основная литература:

Колягин М.В. Ткачева Ю.М., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. М.: Просвещение, 2010.–336 с.

Дополнительная литература:

Шахмейстер, А.Х. Тригонометрия / А.Х. Шахмейстер.— СПб.: Петроглиф, 2014. — 750 с.

Открытые электронные ресурсы:

Открытый банк заданий ЕГЭ ФИПИ [Электронный ресурс].– Режим доступа: http://ege.fipi.ru/

Решу ЕГЭ образовательный портал для подготовки к экзаменам [Электронный ресурс]. – Режим доступа: https://ege.sdamgia.ru/

Теоретический материал для самостоятельного изучения

На прошлом уроке мы говорили о свойствах графика косинуса:

1) область определения функции – множество R всех действительных чисел;

2) Множество значений функции – отрезок [–1;1];

3) Функция косинуса периодическая, ;

4) Функция чётная;

5) Функция принимает:

  • значение, равное 0, при ;
  • наименьшее значение, равное –1, при

;

  • наибольшее значение, равное 1, при ;

6) Функция

  • возрастает на отрезке и на отрезках, получаемых сдвигами этого интервала на .

Давайте сравним их со свойствами графика синуса, а для начала определим следующие моменты:

  • При движении точки до первой четверти ордината увеличивается;
  • При движении точки по второй четверти ордината постепенно уменьшается;
  • Функция возрастает на отрезке и убывает на отрезке .

Свойства функции :

1) D(y) =R;

2) E (y) =[–1;1];

3) Период функции равен ;

4) Функция чётная/нечётная;

5) Функция принимает:

  • значение, равное 0, при ;
  • наименьшее значение, равное –1, при ;
  • наибольшее значение, равное 1, при ;
  • положительные значения на интервале (0;) и на интервалах, получаемых сдвигами этого интервала на ;
  • отрицательные значения на интервале и на интервалах, получаемых сдвигами этого интервала на .

6) Функция 

  • возрастает на отрезке  и на отрезках, получаемых сдвигами этого отрезка на ;
  • убывает на отрезке и на отрезках, получаемых сдвигами этого отрезка на .

Изменяя амплитуду и значение аргумента функции синуса график ведет себя следующим образом (рис.1)

Рис. 1 – графики синуса

Сдвиг графика влево/вправо вдоль оси абсцисс

Если к аргументу функции добавляется постоянная, то происходит сдвиг (параллельный перенос) графика вдоль оси Ох.

Правило: 
1) чтобы построить график функции , нужно сдвинуть график вдоль оси Ох  на b единиц влево;


2) чтобы построить график функции , нужно график  сдвинуть вдоль оси  ОХ  на b единиц вправо.

Теоретический материал для самостоятельного изучения

Актуализация знаний

1. На следующие утверждения нужно ответить верно/неверно.

1) Тригонометрическая функция определена на всей числовой прямой.

2) График нечетной функции можно построить с помощью преобразования симметрии относительно оси Оу.

3) График тригонометрической функции можно построить, используя одну главную полуволну.

Ответ: верно, неверно, верно.

2. Вспомним, что мы уже знаем о функции , ответив на вопросы:

1) Какие значения может принимать переменная х. Какова область определения этой функции?

2) В каком промежутке заключены значения выражения . Назови наибольшее и наименьшее значения функции .

3) Функция синуса чётная или нечётная?

Ответ:1) 𝑥∈𝑅; 2) [–1;1]; 𝑦𝑚𝑎𝑥=3, 𝑦𝑚𝑖𝑛=–3; 3) чётная;

Примеры и разборы решения заданий тренировочного модуля:

Пример 1. Найдем все корни уравнения , принадлежащие отрезку .

Построим графики функций и (рис. 6)

Рис. 7 – графики функций и .

Графики пересекаются в четырёх точках, абсциссы которых являются корнями уравнения . На выбранном отрезке от корни уравнения симметричны: и . Из рисунка видно, что симметричность корней объясняется периодичностью функции: аналогично для

Ответ: ; .

Пример 2.Найти все решения неравенства , принадлежащие отрезку .

Из рисунка 7 видно, что график функции лежит выше графика функции на промежутках и и

Ответ: , ,

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6