Геометрия. 10 класс

Урок 15. Пирамида

Пирамида
Пирамида
Необходимо запомнить

ВАЖНО!

На этом уроке мы ввели понятие пирамиды. Пирамидой будем называть многогранник, составленный из n-угольника и n треугольников, при этом n-угольник называется основанием пирамиды, а треугольники – боковыми гранями. Высотой пирамиды будем называть перпендикуляр, проведенный из вершины пирамиды к плоскости основания. Высота может лежать как внутри пирамиды, так вне ее, в боковой грани или являться ребром.

Название пирамиды зависит от многоугольника, лежащего в основании. Например, пирамида, в основании которой лежит четырехугольник, называется четырехугольной.

Среди пирамид выделяют правильные пирамиды, прямоугольные и усеченные пирамиды.

Также на уроке мы доказали некоторые свойства пирамид, и вывели формулу для вычисления площади боковой поверхности правильной пирамиды.

Пирамида

Пирамиды – одна из загадок человечества. По всему миру было возведено множество пирамид: пирамиды были найдены в Египте, Индии, Мексике и в других странах.

В основном эти постройки выполняли роль храма или усыпальницы. Но почему они имеют именно такую форму? На этот счет ведется много споров, по некоторым из предположений, пирамида – простое в строительстве сооружение, которое отличается от обычных домов, имеющих форму прямоугольного параллелепипеда. Другие утверждают, что пирамида символизирует устремление к солнцу и свету.

Одни из наиболее известных и величественных – пирамиды в Египте.

Размеры пирамиды Хеопса удивляют даже современного человека. Ее основание занимает огромную площадь в 53 тыс. квадратных метров, что соразмерно десяти футбольным полям. Не менее поражают и другие параметры: длина основания – 230 м, длина бокового ребра – столько же, а площадь боковой поверхности – 85,5 тыс. квадратных метров.

Сейчас высота пирамиды Хеопса равна 138 метрам, однако изначально она достигала 147 метров, что можно сравнить с пятидесятиэтажным небоскребом.

На строительство пирамиды пошло около 2 300 000 каменных блоков, объемом свыше 1 м3 каждый.

В настоящее время, чтобы перевезти все камни, из которых сложена пирамида Хеопса понадобится 20 тысяч товарных поездов по 30 вагонов в каждом!

Для площади боковой поверхности усеченной пирамиды верна следующая теорема.


Теорема

Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

Доказательство

Площадь боковой поверхности – сумма площадей боковых граней, то есть сумма площадей трапеций. Площадь трапеции вычисляется как произведение полусуммы оснований на высоту. Поскольку трапеции равны, то и длину апофемы d можно вынести за скобки. В скобках останется сумма длин сторон верхнего и нижнего оснований. То есть периметры верхнего и нижнего оснований.

Что и требовалось доказать. 

Формула для вычисления площади боковой поверхности усеченной пирамиды будет выглядеть следующим образом: 


\[S_{бок} = ½d(P_{ниж.осн.} + P_{верх.осн.})\]

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6