Геометрия. 10 класс

Урок 6. Параллельность плоскостей

Параллельность плоскостей
Параллельность плоскостей
Необходимо запомнить

ВАЖНО!

Определение. Плоскости, которые не пересекаются, называются параллельными.

Признак параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.

Свойства параллельных плоскостей.

Теорема 1. Если две параллельные плоскости пересекаются третьей, то линии их пересечения параллельны.

Теорема 2. Отрезки параллельных прямых, заключенных между двумя параллельными плоскостями, равны.

Теорема 3. Если прямая пересекает одну из двух параллельных плоскостей, то она пересекает и другую.

Теорема 4. Если плоскость пересекает одну из двух параллельных плоскостей, то она пересекает и другую плоскость.

Теорема 5. Через точку, не лежащую в данной плоскости, можно провести плоскость, параллельную данной, и притом только одну.

Параллельность плоскостей

Разберём и докажем теорему.

Теорема.

Через точку, не лежащую в данной плоскости, можно провести плоскость, параллельную данной, и притом только одну.

Доказательство.

Пусть нам даны плоскость α и точка М, ей не принадлежащая.

Докажем, что существует плоскость β, которой принадлежит точка М, параллельная плоскости α.

В данной плоскости α проведём две произвольные пересекающиеся прямые a и b. Через точку M проведём прямые a1 и b1, параллельные соответственно a и b. Плоскость, проходящую через пересекающиеся прямые a1 и b1, обозначим β. На основании признака параллельности плоскостей плоскость β параллельна плоскости α.

Докажем методом от противного, что β – единственная плоскость, удовлетворяющая условию теоремы.

Допустим, что через точку M проходит другая плоскость, например β1, параллельная α.

Так как β1 пересекает плоскость β (они имеют общую точку M), то по теореме 4 плоскость β1 пересекает и плоскость α (β ‖ α). Мы пришли к противоречию. Таким образом, предположение о том, что через точку M можно провести плоскость, отличную от плоскости β и параллельную плоскости α, неверно. Значит, плоскость β – единственна. Теорема доказана. 

Прямая и плоскость

Прямая и плоскость

Проведите через пересекающиеся прямые плоскость, параллельную данной:

Скачайте и распечатайте документ, для выполнения задания

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6