Естествознание. 10 класс

Урок 19. Молекулярная структура живого

Конспект урока

Естествознание, 10 класс

Урок 19. «Молекулярная структура живого»

Перечень вопросов, рассматриваемых в теме:

  • Какие химические элементы входят в состав живой клетки;
  • Какую роль играют углеводы и липиды;
  • Как устроены белки, и как их молекулы приобретают определённую пространственную форму;
  • Что такое ферменты, и как они распознают свои субстраты;
  • Какое строение имеют молекулы РНК и ДНК;
  • Какие особенности молекулы ДНК позволяют ей играть роль носителя генетической информации.

Глоссарий по теме:

Органические соединения – химические соединения, основой строения которых являются атомы углерода; составляют отличительный признак живого.

Полимер – (от греч поли – много, мерос – часть) – многозвеньевая цепь, образующаяся при соединении друг с другом относительно простых молекул – мономеров. Их называют высокомолекулярными соединениями или макромолекулами. К ним относят белки, полисахариды, нуклеиновые кислоты.

Мономеры – низкомолекулярные соединения, способные к образованию макромолекул. Мономерами белков являются аминокислоты; полисахаридов – моносахариды; нуклеиновых кислот – нуклеотиды.

Денатурация – нарушение природной структуры белка (изменение пространственной формы молекулы).

Принцип комплементарности – возможность возникновения водородной связи между определёнными (соответствующими) азотистыми основаниями. Комплементарные основания: А – Т, Г – Ц. Также компилементарными являются пары А – У.

Репликация – свойство молекулы ДНК заключающееся в самодублировании молекулы на основе принципа комплементарности. Этот процесс лежит в основе наследственности.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

  1. Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017.: с 88-93.

Электронные ресурсы:

Основы биохимии. Портал открытая биология // Электронный доступ: https://biology.ru/textbook/chapter8/section1/paragraph1/

Химические вещества клетки .Проект «вся биология» // Электронный доступ: http://www.sbio.info/materials/obbiology/obbkletka/

Теоретический материал для самостоятельного изучения

Чтобы познакомиться с сущностью процессов, протекающих в живых организмах, следует, в первую очередь, познакомиться с их химическим составом. Представление о мельчайших структурах даёт понимание – как способствовать сохранению своего здоровья и биологических систем более высокого ранга.

Вы уже знаете, что из 104 элементов системы Д. И. Менделеева около 70 были обнаружены в живых организмах. Т.е., химический состав живой и неживой природы один и тот же, что свидетельствует об их единстве.

Атомы в клетках не существуют самостоятельно, они образуют различные соединения, которые выполняют определённую функцию.

Одним из важнейших неорганических соединений является вода, которая в клетках вода составляет 70-80%. Из школьного курса химии, вы знаете, что вода является хорошим растворителем. Из физики, что она обладает высокой теплоёмкостью и низкой теплопроводностью. Биологическая роль воды в организме состоит в том, что вода способствует движению веществ и нормальному ходу биохимических реакций, в ней хранится тепло. При недостатке воды, температура тела спортсмена может увеличиваться на 10°, а при движении – и более, так как метаболизм проходит непрерывно и интенсивно.

Основные вещества клетки представляют собой молекулы, состоящие из взаимосвязанных атомов углерода. Такие соединения углерода получили название органические соединения. Органические соединения клетки образуют макромолекулы, представляющие собой многозвеньевые цепи – полимеры. В их числе базовыми являются белки, жиры (липиды), углеводы и нуклеиновые кислоты. Липиды и углеводы играют важную роль в построении структур организмов, выполняют энергетическую и другие важные функции.

Однако, вторую по величине группу в вашем организме составляют белки, на их долю приходится около 50% соединений. Белки выполняют самые разнообразные задачи в организме: участвуют в построении мышечных волокон или соединительной ткани; порождают движение нашего тела; выполняют другие важные функции в организме. Например, – транспортную (гемоглобин), рецепторную, сигнальную, или регуляторную (белки-гормоны), каталитическую (белки-ферменты), защитную (антитела, интерфероны), энергетическую (при расщеплении 1г. белка выделяется 17,6 кДж энергии). Можно сказать, что практически нет таких процессов в биологической системе, которые бы шли без участия белков.

Структура белков. Белки (полипептиды) представляют собой высокомолекулярные соединения, которые состоят из большого количества остатков α-аминокислот соединённых пептидной связью . Эта молекулярная (или полипептидная) цепь (первичная структура) складывается всего из 20 аминокислот, несмотря на их огромное количество в природе. Вторичная структура (пространственное расположение молекулярной цепи) является результатом возникновения водородных связей между близко расположенных аминокислот в молекулярной цепи. В результате молекула приобретает форму спирали. Дальнейшая упаковка молекулы в компактные структуры приводит к образованию клубочков (глобул) – так называемой Третичной структуре. Под Четвертичной структурой понимают форму упаковки сложных белков, состоящих из двух или более полипептидных цепочек (например, гемоглобин, хлорофилл и др). Упаковка каждого типа белка уникальна, поскольку связана с первичной структурой, т.е. определённым набором и последовательностью аминокислот в цепочке. Именно в третичной и четвертичной структурах белок способен выполнять свои непосредственные функции.

Белок может терять, присущую ей, трёхмерную структуру (денатаруция). Это изменение может носить временный или постоянный характер, но и в том и в другом случае последовательность аминокислот белка остаётся неизменной. При денатурации молекула развёртывается и теряет способность выполнять свою обычную биологическую функцию. Вызвать денатурацию могут нагревание, воздействие различных излучений, взаимодействие с сильными кислотами, щелочами и концентрированными растворами солей, органическими растворителями. Обратный процесс – приобретение начальной структуры, получил название – ренатурация.

Такая способность к самоорганизации – уникальное свойство белков, определяющее выполнение ими функций. Свернувшись определённым образом, молекула-фермент может связаться только со своим специфичным веществом (субстратом), присоединив его к активному центру. При помощи белка-фермента происходят химические преобразования субстрата в конечный продукт. Например, фермент пищеварительного тракта липаза расщепляет только жиры. Биологическое значение ферментов – ускорение протекания биохимических реакций, т.е. являются биологическими катализаторами.

Собранные из 20-ти аминокислот белки можно представить как буквы в словах – их разные комбинации создают многообразие слов (белков). Набор белков для каждого организма уникален! Именно сочетание уникальных белков определяет различия и сходства организмов.

Каждому организму ежедневно требуется производить огромное количество белков. Как при этом не допускаются ошибки? В этом механизме безошибочной сборки белков участвуют нуклеиновые кислоты.

Нуклеиновые кислоты представляют собой многозвеньевые цепи, звеньями которых являются нуклеотиды. Нуклеотиды состоят из остатка фосфорной кислоты, углевода и азотистого основания. Различаются нуклеотиды по последнему компоненту: аденин, тимин, цитозин, гуанин и урацил (А, Т, Г, Ц, У – сокращённые буквенные обозначения).

Соединение нуклеотидов в цепочку происходит благодаря связи между углеводом одного нуклеотида и остатком фосфорной кислоты другого, что определяет направленность молекулы (начало-конец).

В зависимости от того, какой углевод входит в состав нуклеотида (рибоза или дезоксирибоза), различают рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).

Модель строения молекулы ДНК предложили ДЖ.Уотсон и Ф.Крик в 1953 году. На основе экспериментальных данных было установлено, что количество А=Т, Г=Ц. Молекула ДНК состоит из двух цепочек закрученных спирально вправо. Цепочки удерживаются друг возле друга за счёт водородных связей, которые возникают между комплементарными азотистыми основаниями: А - Т и Г – Ц. Пара полинуклеотидных цепей расположенных комплементарно друг другу называют комплементарными цепями.

Принцип комплементарности позволяет не только молекуле безошибочно само восстанавливаться, но и само удваиваться. Процесс самодублирования молекулы ДНК – репликации, происходит при участии сложного набора ферментов, которые разъединяют комплементарные цепи. На каждой одиночной (материнской) полинуклеотидной цепи начинается сборка новых цепей ДНК. Под действием группы ферментов, так называемой ДНК-полимеразы, нуклеотиды соединяются в цепи и в результате воссоздаются две идентичные двойные спирали ДНК. Репликация молекулы ДНК может происходить безошибочно многократно.

Порядок расположения нуклеотидов в молекулах ДНК определяет порядок аминокислот в молекулах белков. ДНК организма хранит информацию о всём наборе белков, определяющим свойства клеток и организма в целом. Благодаря наличию механизма репликации, эта информация может быть передана поколениям потомков. Поэтому молекулы ДНК являются носителями наследственной информации.

В отличие от ДНК молекула РНК состоит из одной полинуклеотидной цепи. Существует несколько типов РНК, которые выполняют в клетке разные функции:

- информационная или матричная РНК (мРНК) – играет роль посредника при передаче генетической информации от ДНК к структурам клетки, синтезирующим белок, — рибосомам;

- рибосомные РНК (р-РНК) – вместе с белками формируют рибосомы,

- транспортные РНК (тРНК), доставляют аминокислоты к месту синтеза белка,

и некоторые другие.

Вывод

Клетки всех живых существ обладают схожестью элементного химического состава, а также обнаруживает общность живого и неживого. Молекулярную структуру живого составляют белки, липиды, углеводы и нуклеиновые кислоты. Органические соединения клетки образуют макромолекулы, представляющие собой многозвеньевые цепи – полимеры. Такое сходство химического состава является подтверждением единства происхождения всего живого.

Белки принимают участие практически во всех биохимических реакциях клетки и организма. Цепочки молекул белка построены из 20 аминокислот в разных комбинациях и последовательностях. Для каждого организма состав белков уникален. Последовательность аминокислот белков организма зашифрована в молекула ДНК. Способность ДНК к самокопированию (репликации) обеспечивает возможность передачи генетической информации в живой природе.

Примеры и разбор решения заданий тренировочного модуля:

Задание 1. Выберите один ответ:

Пространственную структуру в виде глобулы характерно для структуры белка называемой:

  • Первичной;
  • Вторичной;
  • Третичной;

Ответ: Третичной

Пояснение: первичная структура линейная последовательность аминокислот белка, вторичная – молекула образует спираль.

Задание 2. Найдите ошибку (ошибки) и вычеркните их.

«Молекулы белков состоят из остатков аминокислот и азотистых оснований. Замена одного аминокислотного звена другим в белковой молекуле не изменяет её свойств. Нарушение природной структуры белка называется денатурацией. При этом белки не утрачивают биологическую активность. Денатурация может происходить под действием радиации, низкой температуры, ряда органических растворителей (спирт, ацетон), воды.»

Ответ: «Молекулы белков состоят из остатков аминокислот и азотистых оснований. Замена одного аминокислотного звена другим в белковой молекуле не изменяет её свойств. Нарушение природной структуры белка называется денатурацией. При этом белки не утрачивают биологическую активность. Денатурация может происходить под действием радиации, низкой температуры, ряда органических растворителей (спирт, ацетон), воды

Пояснение: азотистые основания не входят в состав белков, это составная часть нуклеотидов (мономеров нуклеиновых кислот).

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6