Геометрия. 7 класс

Урок 12. Медианы треугольника. Биссектрисы треугольника. Высоты треугольника

Конспект урока

Геометрия

7 класс

Урок № 12

Медианы треугольника. Биссектрисы треугольника. Высоты треугольника

Перечень рассматриваемых вопросов:

  • Понятие медианы, биссектрисы, высоты треугольника.
  • Построение медианы, высоты, биссектрисы.
  • Точки пересечения медианы, высоты и биссектрисы в треугольнике.
  • Создание представления о замечательных точках в треугольнике.

Тезаурус:

Биссектриса угла – это луч, исходящий из вершины угла и делящий его на два равных угла.

Биссектриса угла треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Высота треугольника – это перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Вы уже знакомы с такими понятиями как треугольник, угол, биссектриса угла.

Разберем, как построить биссектрису треугольника, а также узнаем, что такое медиана и высота треугольника.

Начнём с понятия биссектриса угла треугольника. Это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны. AF – биссектриса ∠A треугольника ABC.

AA1, BB1, CC1 биссектрисы ∆АВС

В любом треугольнике биссектрисы пересекаются в одной точке.

Введём понятие медианы треугольника.

Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.

BM – медиана треугольника ABC.

AA1, BB1, CC1 – медианы ∆АВС.

В любом треугольнике медианы пересекаются в одной точке.

Введём понятие высоты треугольника.

Перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.

AH – высота треугольника ABC.

AH1, BH2, CH3 – высоты ∆АВС.

В любом треугольнике высоты или их продолжения пересекаются в одной точке.

Итак, сегодня мы узнали, какие отрезки называются медианой, биссектрисой, высотой треугольника, и научились их изображать с помощью чертёжных инструментов.

Рассмотрим, как можно решить задачу на доказательство, используя понятие «медиана треугольника».

На рисунке изображён треугольник ABC, при этом AD – медиана ∆ABC продолжена за сторону BC, так что AD = DE.

Докажем, что треугольники ABD и CED равны.

Дано:

АD – медиана ∆ABC.

AD = DE.

Доказать:

∆ABD = ∆CED.

Доказательство:

По условию в треугольниках ABD и CED: сторона AD равна стороне DE. Т. к. АD – медиана ∆ABC, то, по определению медианы, BD = DC.

∠ADB = ∠CDE (по свойству вертикальных углов).

Следовательно, ∆ABD = ∆CED (по первому признаку равенства треугольников: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны).

Что и требовалось доказать.

Разбор решения заданий тренировочного модуля.

Задача 1.

В треугольнике ABC проведены биссектрисы AD и BM, которые пересекаются в точке O. Найдите углы треугольника ABO, если ∠BAC = 50°, ∠ABC = 80°, а сумма углов треугольника ABO равна 180°.

Решение:

1.Нарисуем рисунок по условию задачи.

2.По условию AD и BM – биссектрисы ∆ABC.

∠BAC = 50°, ∠BAC = 2∠BAO =50° → ∠BAO = 25°

∠ABC = 80°, ∠ABC= 2∠ABO = 80°→∠ABO = 40°

3.Т. к. сумма углов треугольника ABO равна 180°, то ∠ABO + ∠BAO + ∠AOB = 180°.

4.25° + 40° + ∠AOB = 180°.

5.∠AOB = 180° – (25° + 40°) = 115°.

Ответ: ∠BAO = 25°, ∠ABO = 40°, ∠AOB = 115°.

Задача 2.

В треугольнике COD: ∠O = 90°. Найдите ∠МОВ, если ОА – биссектриса угла ∠СОM, при этом ∠COА = 20°, а ВО– биссектриса ∠МОD.

Решение:

1.По условию ∠СОD = 90°.

Кроме того, ОА – биссектриса угла ∠СОM → ∠МОА = ∠СОА = 20°.

2.ВО – биссектриса ∠МОD→∠ВОD = ∠МОВ.

3. ∠СОD = ∠МОА + ∠СОА + ∠ВОD + ∠МОВ = 20° + 20° + 2∠МОВ = 40° + 2∠МОВ = 90°.

4. 40° + 2∠МОВ = 90°.

∠МОВ = (90° – 40°):2 = 25°.

Ответ: ∠МОВ = 25°.

Предметы

По алфавиту По предметным областям

Классы

1 2 3 4 5 6 7 8 9 10 11
angle-skew-bottom mix-copy next-copy-2 no-copy step-1 step-2 step-3 step-4 step-5 step-6 step-6